
ICFP Contest 2021
Specification v3.0

Alex Lang, Jasper Van der Jeugt

1 Introduction
After cleaning up bit rot in underground mines and communicating with aliens, an era of peace and leisure
has arrived in Lambda land. This has lead to a number of TV game shows really taking off. One of these is
Brain Wall, a contest originating in Japan. Many local versions of this have aired across the globe and it is
sometimes better known as Human Tetris or Hole in the Wall.

Figure 1: Screen capture of the TV Show

An automated system moves a styrofoam wall towards the player. This wall has a hole cut out, and the goal
of the game is to assume a position with your body that allows you to fit through the hole in the wall. But
just fitting through the hole is not enough: in our variation, fully automated judges will count the number of
dislikes, which the participants try to minimize.

More background information about Brain Wall can be found on the wikipedia page. You can also watch
some samples of the TV show on youtube.

1

https://en.wikipedia.org/wiki/Brain_Wall
https://www.youtube.com/watch?v=6DYJXSSgW08

2 Updates
Note that there will be updates to this specification, and more problems will be released during the contest.
This will happen at these specific times:

• 12 hours into the contest (new problems only, no changes to specification)
• 24 hours into the contest (after the lightning division ends)
• 36 hours into the contest
• 48 hours into the contest

We may also release smaller clarifications on the FAQ page.

2.1 Changelog
• v1.1 at 9 July, 12:43 UTC: Clarified that we only consider the last pose for each problem for each team.

• v1.2 at 10 July, 00:00 UTC: Added HTTP API endpoint to obtain info about submitted solutions.

• v2.0 at 10 July, 12:00 UTC: Added bonus system with BREAK_A_LEG and GLOBALIST.

• v2.1 at 10 July, 14:13 UTC: Fixed naming inconsistency with d and d′ in GLOBALIST constraint.

• v3.0 at 11 July, 00:00 UTC: Added WALLHACK bonus

3 Problem definition
The goal is to assume a pose with a given figure so that it fits into the given hole, while scoring as many
points as possible.

The figure and hole are both located on a two-dimensional grid. They both consist of line segments that all
start and end at a point with integer X and Y coordinates.

Figure 2: The “Lambdaman” problem

A hole is always a simple polygon: this means the line segments of the hole will not intersect, and there
will be no further holes within the hole. A figure consists of line segments that may connect to other line
segments at the start and end points.

Assuming a pose works by moving the start and end points of line segments into a new configuration. This is
of course not without constraints, since our stick figures cannot break the laws of physics!

We require that:

(a) If line segments connect in the original figure, they must also connect in the assumed pose. The list of
connections is explicitly indicated in the problem.

(b) Edges cannot be compressed or stretched arbitrarily. The amount that an edge can be stretched depends
on the original edge length.

We define the squared distance d in between two points p and q as:

2

https://icfpcontest2021.github.io/faq.html

d(p, q) = (px − qx)2 + (py − qy)2

Let’s assume an edge between vertices vi and vj exists the original figure, and v′
i and v′

j are the new
positions of these points in the assumed pose.

We then require that the ratio between the two squared lengths is at most ε/1, 000, 000 away from 1:

∣∣∣∣d(v′
i, v′

j)
d(vi, vj) − 1

∣∣∣∣ ≤ ε

1, 000, 000

ε is an integer specified per problem.

Furthermore, if a pose is to be considered by the judges, the figure must of course fit in the hole once the
figure assumes the pose.

(c) Every point located on any line segment of the figure in the assumed pose must either lay inside the
hole, or on its boundary.

When all these constraints are satisfied, the automated judges will count the number of dislikes based on how
well the pose fits in the hole. The judges prefer participants who take risk and place figure parts close to
every corner of the hole.

For every vertex h in the hole, we take the squared distance to the nearest vertex v in the pose assumed by
the figure and then add up those distances.

dislikes(hole, pose) =
∑

h∈hole

min
v∈pose

d(h, v)

A lower number of dislikes is better.

Figure 3: A possible pose for to the “Lambdaman” problem

4 Submission
4.1 Wire format
Problems and poses are encoded in JSON. A complete example of a problem is given at the bottom of this
section.

Points Points are encoded as a JSON array holding the X and Y coordinate, in that order. Coordinates are
always integers.

Hole A hole is encoded as a JSON array containing all vertices of the hole in order. The minimum number
of vertices is 3.

Figure A figure is encoded as a JSON object with two properties:

3

• vertices: An array of points, indicating the initial locations of the vertices. The minimum
number of vertices is 2.

• edges: An array of pairs, where each pair represents a line segment between the two vertices. The
pairs are given as two 0-based indices into the vertices array. The pairs can be specified in either
order. The minimum number of edges is 1.

Problem A problem is encoded as a JSON object with the following properties:

• hole: A hole as defined above.
• figure: A figure as defined above.
• epsilon: The ε used for this problem.

Pose A pose is encoded as a JSON object with a single property:

• vertices: An array of points, indicating the new positions of points in the assumed pose.

4.1.1 Example

As a full example, here is the JSON encoding of the “Lambdaman” problem.

{
"hole": [

[55, 80], [65, 95], [95, 95], [35, 5], [5, 5],
[35, 50], [5, 95], [35, 95], [45, 80]

],
"figure": {

"edges": [
[2, 5], [5, 4], [4, 1], [1, 0], [0, 8], [8, 3], [3, 7],
[7, 11], [11, 13], [13, 12], [12, 18], [18, 19], [19, 14],
[14, 15], [15, 17], [17, 16], [16, 10], [10, 6], [6, 2],
[8, 12], [7, 9], [9, 3], [8, 9], [9, 12], [13, 9], [9, 11],
[4, 8], [12, 14], [5, 10], [10, 15]

],
"vertices": [

[20, 30], [20, 40], [30, 95], [40, 15], [40, 35], [40, 65],
[40, 95], [45, 5], [45, 25], [50, 15], [50, 70], [55, 5],
[55, 25], [60, 15], [60, 35], [60, 65], [60, 95], [70, 95],
[80, 30], [80, 40]

]
},
"epsilon": 150000

}

And this is the JSON encoding of the pose in the figure we saw earlier:

{
"vertices": [

[21, 28], [31, 28], [31, 87], [29, 41], [44, 43], [58, 70],
[38, 79], [32, 31], [36, 50], [39, 40], [66, 77], [42, 29],
[46, 49], [49, 38], [39, 57], [69, 66], [41, 70], [39, 60],
[42, 25], [40, 35]

]
}

4.2 How to submit poses
Poses can be submit through the web portal at https://poses.live. After registering on that portal, teams can
submit poses either directly through the upload form provided in the web portal, or through an HTTP API

4

https://poses.live

at the same domain.

In order to use the HTTP API, teams must first obtain their API token through the web portal. You can
find this your team’s page. Each request must then include this token in an Authorization header:

Authorization: Bearer $YOUR_API_TOKEN

The HTTP API supports the following methods:

GET /api/hello Says hello to your team. This can be used to verify that your API token works.

GET /api/problems/$PROBLEM_ID Retrieves the JSON encoding of the specified problem.

POST /api/problems/$PROBLEM_ID/solutions Submit a pose. The request body must contain a JSON
encoding of a pose. Returns a pose ID.

GET /api/problems/$PROBLEM_ID/solutions/$POSE_ID Retrieves information about a submitted pose.
This is a JSON object with the following attributes:

• state: Either PENDING, VALID or INVALID.
• dislikes: The number of dislikes, when valid.
• error: The error message, when invalid.

Regardless of whether you are using the HTTP API or web submission, you cannot submit
a pose for a problem if you already submitted a pose for that problem within the last five
minutes.

4.3 Scoring
For determining a team’s score, only the latest submission for each problem is considered. If that submission
is a valid pose, the team’s score for that specific problem is given by:

⌈
1000 ∗ log2

(
|vertices| ∗ |edges| ∗ |hole|

6

)
∗
√

dislikesbest + 1
dislikesteam + 1

⌉

|vertices| and |edges| are the number of edges and vertices in the figure of the problem, respectively. |hole| is
the number of vertices in the hole. dislikesteam is the number of dislikes counted by the judges for the team’s
pose, and dislikesbest is the lowest number of dislikes for this problem among all teams.

A team’s total score is the sum of their scores for individual problems.

4.4 Deadlines
As traditional, the contest will have a Lightning Division spanning the first 24 hours. To qualify for the
Lightning Division prize, submit your poses by July 10, 2021, 12:00pm (noon) UTC.

To qualify for the Full Division prize, submit your poses by July 12, 2021, 12:00pm (noon) UTC.

In order to qualify for any prizes, your source code must be submitted by the end of the contest as well. You
can do this through the web portal.

4.5 Determing the Winner
We will use the same procedure to determine the winner in both the lightning and full divisions, ranking the
teams by cumulative score, computed as the sum of scores for each task.

4.6 The Judges’ Prize
The judges’ prize will be picked by the contest organisers. All entries in both the full and lightning divisions
are eligible for the judges’ prize.

5

5 Bonuses
Each brain wall problem may have specific locations that are preferred by the judges. Poses that manage
to place a vertex at these specific locations are awarded bonuses. Each awarded bonus unlocks a certain
advantage for a specific puzzle.

Note that even though multiple bonuses can be available to use in a given problem, participants may only
use one per pose.

5.1 Submission invalidation
Keep in mind that when using bonuses, submitting a pose that does not unlock certain bonuses may
invalidate other poses, which can in turn invalidate more poses.

On the other hand, submitting poses that unlock certain bonuses may validate other poses transitively as
well, if these other poses depended on these bonuses.

Validation based on bonuses always uses the latest submission for each problem. The order in which
submissions for different problems are submitted does not matter.

5.2 Wire format
The JSON objects for problems and poses are extended to support awarding and using bonuses.

Problem A problem JSON object may contain a bonuses property. This holds an array of JSON objects.
Each of the objects in this array contains the following properties:

• position: The point on which a vertex must be placed to unlock the bonus.
• bonus: A string representing the type of bonus that can be unlocked.
• problem: The ID of the problem in which this bonus can be used once it has been unlocked.

Pose A pose JSON object may contain a bonuses property. This holds an array of JSON objects. Each of
the objects in this array contains the following properties:

• bonus: A string representing the type of bonus that is used.
• problem: The ID of the problem in which this bonus has been unlocked.

In addition to bonus and problem, some bonuses may require additional properties indicating how the
pose uses the bonus.

6 Available bonuses
6.1 GLOBALIST
Enabling the GLOBALIST bonus relaxes constraint (b) on the amount edges can be compressed or stretched.
Rather than having an constraint for each edge individually, you can use a global epsilon budget. This global
epsilon budget is the number of edges in the original figure multiplied by ε.

∑
(i,j)∈edges

∣∣∣∣d(v′
i, v′

j)
d(vi, vj) − 1

∣∣∣∣ ≤ |edges| · ε
1, 000, 000

6.2 BREAK_A_LEG
Turning on BREAK_A_LEG allows you to specify a specific edge (i, j) that is broken in half at its midpoint;
resulting in two smaller edges connected to a new vertex. The position of this new vertex must be added
after the vertices of the existing positions.

6

Constraint (b) is updated for these two new edges. If we assume that k is the index of the newly added
vertex, then this means we broke edge (i, j) into new edges (i, k) and (j, k). The edge length constraint on
d(vi, vj) is replaced by the following constraints:

∣∣∣∣4d(v′
i, v′

k)
d(vi, vj) − 1

∣∣∣∣ ≤ ε

1, 000, 000∣∣∣∣4d(v′
j , v′

k)
d(vi, vj) − 1

∣∣∣∣ ≤ ε

1, 000, 000

When a BREAK_A_LEG bonus is used, objects in the array in the bonuses property of the JSON format for a
pose must specify an additional edge property. edge must be an array in the shape of [i, j] where i and j
are the indices of the vertices between which you want to break the edge.

6.2.1 WALLHACK

Enabling WALLHACK relaxes constaint (c) requiring the figure to fit in the hole. It makes it possible to place up
to one vertex outside of the hole. All edges connected to this vertex are also allowed to be partially outside
of the hole.

Good luck and have fun!!!!!

7

	Introduction
	Updates
	Changelog

	Problem definition
	Submission
	Wire format
	Example

	How to submit poses
	Scoring
	Deadlines
	Determing the Winner
	The Judges' Prize

	Bonuses
	Submission invalidation
	Wire format

	Available bonuses
	GLOBALIST
	BREAK_A_LEG
	WALLHACK

