
ICFP Contest 2021
Specification v1.2

Alex Lang, Jasper Van der Jeugt

1 Introduction
After cleaning up bit rot in underground mines and communicating with aliens, an era of peace and leisure
has arrived in Lambda land. This has lead to a number of TV game shows really taking off. One of these is
Brain Wall, a contest originating in Japan. Many local versions of this have aired across the globe and it is
sometimes better known as Human Tetris or Hole in the Wall.

Figure 1: Screen capture of the TV Show

An automated system moves a styrofoam wall towards the player. This wall has a hole cut out, and the goal
of the game is to assume a position with your body that allows you to fit through the hole in the wall. But
just fitting through the hole is not enough: in our variation, fully automated judges will count the number of
dislikes, which the participants try to minimize.

More background information about Brain Wall can be found on the wikipedia page. You can also watch
some samples of the TV show on youtube.

1

https://en.wikipedia.org/wiki/Brain_Wall
https://www.youtube.com/watch?v=6DYJXSSgW08

2 Updates
Note that there will be updates to this specification, and more problems will be released during the contest.
This will happen at these specific times:

• 12 hours into the contest (new problems only, no changes to specification)
• 24 hours into the contest (after the lightning division ends)
• 36 hours into the contest
• 48 hours into the contest

We may also release smaller clarifications on the FAQ page.

2.1 Changelog
• v1.1 at 9 July, 12:43 UTC: Clarified that we only consider the last pose for each problem for each team.

• v1.2 at 10 July, 00:00 UTC: Added HTTP API endpoint to obtain info about submitted solutions.

3 Problem definition
The goal is to assume a pose with a given figure so that it fits into the given hole, while scoring as many
points as possible.

The figure and hole are both located on a two-dimensional grid. They both consist of line segments that all
start and end at a point with integer X and Y coordinates.

Figure 2: The “Lambdaman” problem

A hole is always a simple polygon: this means the line segments of the hole will not intersect, and there
will be no further holes within the hole. A figure consists of line segments that may connect to other line
segments at the start and end points.

Assuming a pose works by moving the start and end points of line segments into a new configuration. This is
of course not without constraints, since our stick figures cannot break the laws of physics!

We require that:

(a) If line segments connect in the original figure, they must also connect in the assumed pose. The list of
connections is explicitly indicated in the problem.

(b) Edges cannot be compressed or stretched arbitrarily. The amount that an edge can be stretched depends
on the original edge length.

We define the squared distance d in between two points p and q as:

d(p, q) = (px − qx)2 + (py − qy)2

Let’s assume an edge between vertices vi and vj exists the original figure, and v′
i and v′

j are the new
positions of these points in the assumed pose.

2

https://icfpcontest2021.github.io/faq.html

We then require that the ratio between the two squared lengths is at most ε/1, 000, 000 away from 1:

∣∣∣∣d(v′
i, v′

j)
d(vi, vj) − 1

∣∣∣∣ ≤ ε

1, 000, 000

ε is an integer specified per problem.

Furthermore, if a pose is to be considered by the judges, the figure must of course fit in the hole once the
figure assumes the pose.

(c) Every point located on any line segment of the figure in the assumed pose must either lay inside the
hole, or on its boundary.

When all these constraints are satisfied, the automated judges will count the number of dislikes based on how
well the pose fits in the hole. The judges prefer participants who take risk and place figure parts close to
every corner of the hole.

For every vertex h in the hole, we take the squared distance to the nearest vertex v in the pose assumed by
the figure and then add up those distances.

dislikes(hole, pose) =
∑

h∈hole

min
v∈pose

d(h, v)

A lower number of dislikes is better.

Figure 3: A possible pose for to the “Lambdaman” problem

4 Submission
4.1 Wire format
Problems and poses are encoded in JSON. A complete example of a problem is given at the bottom of this
section.

Points Points are encoded as a JSON array holding the X and Y coordinate, in that order. Coordinates are
always integers.

Hole A hole is encoded as a JSON array containing all vertices of the hole in order. The minimum number
of vertices is 3.

Figure A figure is encoded as a JSON object with two properties:

• vertices: An array of points, indicating the initial locations of the vertices. The minimum
number of vertices is 2.

• edges: An array of pairs, where each pair represents a line segment between the two vertices. The
pairs are given as two 0-based indices into the vertices array. The pairs can be specified in either
order. The minimum number of edges is 1.

3

Problem A problem is encoded as a JSON object with the following properties:

• hole: A hole as defined above.
• figure: A figure as defined above.
• epsilon: The ε used for this problem.

Pose A pose is encoded as a JSON object with a single property:

• vertices: An array of points, indicating the new positions of points in the assumed pose.

4.1.1 Example

As a full example, here is the JSON encoding of the “Lambdaman” problem.

{
"hole": [

[55, 80], [65, 95], [95, 95], [35, 5], [5, 5],
[35, 50], [5, 95], [35, 95], [45, 80]

],
"figure": {

"edges": [
[2, 5], [5, 4], [4, 1], [1, 0], [0, 8], [8, 3], [3, 7],
[7, 11], [11, 13], [13, 12], [12, 18], [18, 19], [19, 14],
[14, 15], [15, 17], [17, 16], [16, 10], [10, 6], [6, 2],
[8, 12], [7, 9], [9, 3], [8, 9], [9, 12], [13, 9], [9, 11],
[4, 8], [12, 14], [5, 10], [10, 15]

],
"vertices": [

[20, 30], [20, 40], [30, 95], [40, 15], [40, 35], [40, 65],
[40, 95], [45, 5], [45, 25], [50, 15], [50, 70], [55, 5],
[55, 25], [60, 15], [60, 35], [60, 65], [60, 95], [70, 95],
[80, 30], [80, 40]

]
},
"epsilon": 150000

}

And this is the JSON encoding of the pose in the figure we saw earlier:

{
"vertices": [

[21, 28], [31, 28], [31, 87], [29, 41], [44, 43], [58, 70],
[38, 79], [32, 31], [36, 50], [39, 40], [66, 77], [42, 29],
[46, 49], [49, 38], [39, 57], [69, 66], [41, 70], [39, 60],
[42, 25], [40, 35]

]
}

4.2 How to submit poses
Poses can be submit through the web portal at https://poses.live. After registering on that portal, teams can
submit poses either directly through the upload form provided in the web portal, or through an HTTP API
at the same domain.

In order to use the HTTP API, teams must first obtain their API token through the web portal. You can
find this your team’s page. Each request must then include this token in an Authorization header:

Authorization: Bearer $YOUR_API_TOKEN

4

https://poses.live

The HTTP API supports the following methods:

GET /api/hello Says hello to your team. This can be used to verify that your API token works.

GET /api/problems/$PROBLEM_ID Retrieves the JSON encoding of the specified problem.

POST /api/problems/$PROBLEM_ID/solutions Submit a pose. The request body must contain a JSON
encoding of a pose. Returns a pose ID.

GET /api/problems/$PROBLEM_ID/solutions/$POSE_ID Retrieves information about a submitted pose.
This is a JSON object with the following attributes:

• state: Either PENDING, VALID or INVALID.
• dislikes: The number of dislikes, when valid.
• error: The error message, when invalid.

Regardless of whether you are using the HTTP API or web submission, you cannot submit
a pose for a problem if you already submitted a pose for that problem within the last five
minutes.

4.3 Scoring
For determining a team’s score, only the latest submission for each problem is considered. If that submission
is a valid pose, the team’s score for that specific problem is given by:

⌈
1000 ∗ log2

(
|vertices| ∗ |edges| ∗ |hole|

6

)
∗
√

dislikesbest + 1
dislikesteam + 1

⌉

|vertices| and |edges| are the number of edges and vertices in the figure of the problem, respectively. |hole| is
the number of vertices in the hole. dislikesteam is the number of dislikes counted by the judges for the team’s
pose, and dislikesbest is the lowest number of dislikes for this problem among all teams.

A team’s total score is the sum of their scores for individual problems.

4.4 Deadlines
As traditional, the contest will have a Lightning Division spanning the first 24 hours. To qualify for the
Lightning Division prize, submit your poses by July 10, 2021, 12:00pm (noon) UTC.

To qualify for the Full Division prize, submit your poses by July 12, 2021, 12:00pm (noon) UTC.

In order to qualify for any prizes, your source code must be submitted by the end of the contest as well. You
can do this through the web portal.

4.5 Determing the Winner
We will use the same procedure to determine the winner in both the lightning and full divisions, ranking the
teams by cumulative score, computed as the sum of scores for each task.

4.6 The Judges’ Prize
The judges’ prize will be picked by the contest organisers. All entries in both the full and lightning divisions
are eligible for the judges’ prize.

Good luck and have fun!!!!!

5

	Introduction
	Updates
	Changelog

	Problem definition
	Submission
	Wire format
	Example

	How to submit poses
	Scoring
	Deadlines
	Determing the Winner
	The Judges' Prize

